skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pierre-Jacques, Dominick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A technique capable of label-free detection, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of native biomolecules in intact specimens. However, MSI has often been precluded from single-cell applications due to the spatial resolution limit set forth by the physical and instrumental constraints of the method. By taking advantage of the reversible interaction between the analytes and a superabsorbent hydrogel, we have developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome the spatial resolution limits of modern mass spectrometers. With GAMSI, we show that the spatial resolution of MALDI-MSI can be enhanced ~3-6-fold to the sub-micrometer level without changing the existing mass spectrometry hardware or analysis pipeline. This approach will vastly enhance the accessibility of MSI-based spatial analysis at the cellular scale. 
    more » « less
  2. null (Ed.)
    We describe a novel variant of the driven molecular dynamics (DMD) method derived for probing Raman active vibrations. The method is an extension of the conventional alpha-DMD formulation for simulating IR activity by means of coupling an oscillating electric field to the molecule’s dipole moment, miu, and inducing absorption of energy via tuning the field to a resonant frequency. In the present work, we modify the above prescription to invoke Raman activity by coupling two electric fields, i.e., a “Pump” photon of frequency wP and a Stokes photon of frequency wS to the molecule’s polarizability tensor, alpha, with the difference in the frequencies of the two photons w = wP - wS corresponding to the Stokes Raman shift. If a particular w is close to a Raman active vibrational frequency, energy absorption by the molecule ensues. Varying w over the desired frequency range allows identifying and assigning all Raman active vibrational modes, including anharmonic corrections, in the range by means of trajectory analysis. We show that only one element of the full polarizability tensor, and its nuclear derivative, is needed for an alpha-DMD trajectory, making this method well suited for ab initio dynamics implementation. Numerical results using first-principles calculations are presented and discussed for the vibrational fundamentals, combination bands, overtones of H2O, CH4, and the C20 fullerene. 
    more » « less